If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=263t+-16t^2
We move all terms to the left:
10-(263t+-16t^2)=0
We use the square of the difference formula
-(263t-16t^2)+10=0
We get rid of parentheses
16t^2-263t+10=0
a = 16; b = -263; c = +10;
Δ = b2-4ac
Δ = -2632-4·16·10
Δ = 68529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-263)-\sqrt{68529}}{2*16}=\frac{263-\sqrt{68529}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-263)+\sqrt{68529}}{2*16}=\frac{263+\sqrt{68529}}{32} $
| 25^(2x+3)=(1/125)^(1-x) | | 5/y=12/16 | | 4m+15m=38 | | 4(8n+3)-25=2(6n+8)+1 | | 5x-9+2x+13=180 | | M=(15.75+3.2d)D=20 | | 10x2+9x−40=0 | | 0=-1/3(x-5)(x+5) | | 12/x^2-9=2/x-3-3/x+3 | | 2(x-25)=7x | | 9-2x=6x+2 | | 4x-13+2x-19=180 | | 10a+20=18+2 | | 6(2x-5)=4x+5+7x-3+x-6 | | 9p^2-3=0 | | x/(13/18)=9/5 | | Y=-x2-8x-13 | | -2.5x=34.50 | | 5x=3(x-4) | | x/13/18=9/5 | | f(7/8)=7/8+1/3 | | 5-9y=0 | | Y=—x2–8x—13 | | x-1/11=6/11 | | 5x-10-10=0 | | 2=3x-4x2x | | 5(2t-1)+18=3(3t+2) | | 7.2=s/20 | | 6000000000000*100000=x | | 3.99x=50+1.99 | | x⁵-X⁴-31x³+73x²+30x-72=0 | | x+.57x=58458 |